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The effects of curvature on sheared turbulence 

By A. G. L. HOLLOWAYT AND S .  TAVOULARIS 
Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada K1N 6N5 

(Received 18 May 1990 and in revised form 9 August 1991) 

The present experiments are an extension of previous studies on nearly homogeneous, 
parallel, shear flows and represent an attempt to  study the effects of curvature on 
sheared turbulence in relative isolation from wall and entrainment effects. Uniformly 
sheared turbulence was allowed to  reach a state of transverse statistical homogeneity 
in a straight rectangular duct: it was then passed into a curved duct, also of 
rectangular cross-section. The near homogeneity of the turbulence and the near 
uniformity of the shear were preserved. In the present experiments, the parameter 
S = (lJ,/RJ/(dU/dn) spanned a wide range, from approximately -0.50 to over 1.0 
( U ,  is the centreline velocity, dU/dn the mean shear and R, the radius of curvature 
on the centreline of the duct). Variation of S was achieved by using two curved 
tunnel sections as well as by adjusting the shear. Measurements indicate that the 
growth of the turbulent stresses and lengthscales was enhanced for S < O  and 
suppressed for S > 0. For S > 0.05, the stresses decayed. I n  cases where sufficiently 
large total strain was achieved, the stresses seemed to  grow or decay roughly 
exponentially and to develop in a quasi-self-preserving manner. The magnitude of 
the dimensionless shear stress decreased monotonically with increasing S, while, for 
sufficiently large positive values of S ,  this quantity reversed sign, to achieve the same 
sense as the mean shear. Measurements of the integral lengthscales and the Taylor 
microscales are presented and their dependence upon curvature discussed. The 
results in ‘mildly curved’ flows are used to derive approximate expressions for the 
dependence upon S of the various terms in the Reynolds stress equations, including 
the pressurestrain rate covariance tensor. 

1. General introduction and a review of the literature 
The instantaneous streamlines of all turbulent motions are highly curved. With 

few exceptions, turbulent shear flows also display mean streamline curvature. 
The importance of curvature effects varies widely from one shear flow to another. 

For example, the curvature of the mean streamlines in the boundary layer along a 
flat plate is so slight that  its effects are essentially unnoticeable, while in some vortex 
flows the turbulence structure is dominated by curvature effects. Curvature can have 
a stabilizing or destabilizing cffect on the fluid motion, depending on the direction of 
the curvature with respect to the flow velocity and its gradient, and it affects both 
the process of transition to turbulence and the evolution of fully turbulent motions. 
It has been well documented that even slight boundary curvature introduces 
significant changes in skin friction. Stronger boundary curvature is known to 
generate streamwise vorticity. 

A better understanding of the interaction between streamline curvature and shear 
may provide insight into drag reduction and perhaps lead to  a better design of 
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vehicles and fluid machinery. Most analyses of curved shear flows have been 
concerned with the stability of basic motions, i.e. of ‘simple’ solutions of the 
governing equations. Rayleigh (1916) and Synge (1933) studied inviscid flow and 
found it unstable in cases where the angular momentum decreased with increasing 
radius. Taylor (1923) and Synge (1938) studied viscous flow between rotating 
cylinders and found that, for stability of small axisymmetric disturbances, the 
circulation of the outer cylinder must have the same sense as and be greater than 
that of the inner cylinder. Gortler (1940) examined the stability of curved boundary 
layers and Dean (1928) the stability of Poiseuille flow in curved circular pipes. These 
authors concluded that linear instability analysis can predict the formation of 
longitudinal vortices. Although the relevance of linear analyses to fully turbulent 
flows is, a t  best, questionable, such analyses provide the only available mathematical 
and physical basis for understanding curved turbulent flows. 

A fair number of experimental studies of turbulent curved shear flows, mostly with 
two-dimensional curvature, have been published in recent years. Many of these can 
be classified as (a) boundary layers along convex and concave surfaces, (b )  curved free 
shear flows, and (c) curved duct flows. 

Measurements of the turbulence in convex boundary layers have been performed 
by So & Mellor (1973), Meroney & Bradshaw (1975), Smits, Young & Bradshaw 
(1979), Ramaprian & Shivaprasad (1978a, b, 1982), Gillis & Johnston (1983), Gibson, 
Verriopoulos & Vlachos (1984), Gibson & Verriopoulos (1984) and Muck, Hoffman & 
Bradshaw (1985). With the exception of the experiments by So & Mellor (1973), these 
are cases with relatively mild curvature. 

Measurements of the turbulence in concave boundary layers have been performed 
by Meroney & Bradshaw (1975), So & Mellor (1975), Smits et al. (1979), Nakano et al. 
(1981), Ramaprian & Shivaprasad (1978a, b ,  1982), Shizawa & Honami (1985), 
Hoffman, Muck & Bradshaw (1985) and Barlow & Johnston (1988a, b ) .  So & Mellor 
(1975) used strong curvature and observed longitudinal vortices in the mean flow. 

Among the above studies, it appears that the measurements of Ramaprian & 
Shivaprasad (1978a, b,  1982) describe most comprehensively the flow structure of 
curved boundary layers. The only experiments with some resemblance to the present 
study are those by Nakano et al. (1981), which considered the effect of free-stream 
turbulence, maintained by an approximately uniform shear, on a concave boundary 
layer. While the free-stream turbulence was not homogeneous, its intensity was 
found to increase when the velocity decreased away from the centre of curvature but 
not when the velocity increased away from the centre of curvature. 

Turbulence measurements in curved free shear flows include those in strongly 
curved mixing layers by Margolis & Lumley (1965), Wyngaard et al. (1968) and 
Castro & Bradshaw (1976), and those in curved wakes by Savill(l983) and Koyama 
(1981). The measurements of Savill (1983) include multiple point velocity statistics. 

Measurements of the turbulence in fully developed curved rectangular duct flow 
have been performed by Eskinazi & Yeh (1956) and Hunt & Joubert (1979). The 
direct numerical simulation of a relatively low-Reynolds-number, turbulent, curved, 
rectangular channel flow by Moser & Moin (1987) can also be used for comparison 
with experimental results. 

The experimental results have consistently demonstrated an enhancement of 
turbulent mixing in cases where the velocity decreases away from the centre of 
curvature and a suppression of turbulent mixing where the velocity decreases 
towards the centre of curvature. These observations are compatible with the results 
of linear inviscid theory. 
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The above review demonstrates that significant efforts have been made to 
document the effects of curvature on bounded and free shear flows. Although most 
of these studies have been performed in relatively ‘ simple ’ laboratory configurations, 
they are invariably subject to the simultaneous action of several interacting 
mechanisms, such as the entrainment of irrotational flow, the proximity of viscous 
wall layers and the inevitable non-uniformity of the mean shear. The objective of the 
present research is to reduce and, if possible, to eliminate the interference of such 
mechanisms, so that the evolution of turbulence under the influence of ‘pure’ 
curvature and ‘pure’ shear can be revealed. To achieve this, the concept of non- 
stationary homogeneous turbulent shear flow (for a discussion see Hinze 1975) and 
its experimental approximation, the uniformly sheared turbulent flow (Champagne, 
Harris & Corrsin 1970), have been extended to include the effects of curvature. This 
extension is limited to cases where the turbulent lengthscales are small in comparison 
to the radius of curvature. 

Although a very large volume of data was collected for this work, economy of 
presentation dictates that only the most significant, or, in some cases, representative 
results be presented here. More details can be found in the thesis of Holloway (1989). 

2. Analytical description of homogeneous, non-stationary, curved shear 
flow 

2.1. Introduction 
In a curved shear flow the energy provided to the turbulence comes from the mean 
straining of the fluid as in rectilinear shear flows. The local strain is a function of the 
curvature. In addition, the flow curvature changes the turbulence structure, which, 
in turn, affects the efficiency of the energy transfer from the mean flow to  the 
turbulence. 

An ideal flow for studying the interaction of shear and curvature would be one 
where turbulence, curvature and shear are homogeneous. Such a flow can be 
conceived by extending the notion of rectilinear, homogeneous, shear flow to a flow 
with mean streamlines which are not parallel but form concentric rings. The shear 
should be assumed uniform in the radial direction but a fluid particle would on the 
average move along a curved path. It is easy to see that inhomogeneity of the 
turbulence would inevitably develop under such conditions, as a result of the 
transverse non-uniformity of the curvature and strain. Nevertheless, it seems worth 
exploring the plausibility of an approximately homogeneous curved shear flow by 
introducing additional constraints. 

Consider a flow field bounded by two coaxial circular cylinders with a difference in 
radius that is large in comparison with the scales of the turbulence but small 
compared with the mean radius. Then the mean streamline curvature can be 
considered as nearly constant within the volume and the turbulence structure in the 
core of the volume can be assumed independent of wall effects, at least over a 
sufficiently small time interval. If the turbulence within this volume is homogeneous 
initially, i t  is likely to remain homogeneous for some time. 

2.2. Equations for the Reynolds stresses 
The flow introduced in the previous section can best be described in a curvilinear, 
orthogonal system of coordinates, similar to those commonly used in studies of 
curved boundary layers. These will be denoted by s, n and z ,  as shown in figure 1 .  The 
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FIQURE 1. Schematic representation of simple curved shear flows. 

s-coordinate is the length of a circular arc, with a radius R,, coincident with the flow 
volume centreline. The n-coordinate is normal to s, has its origin on the volume 
centreline and is positive when directed away from the centre of curvature. The 
radial extent of the flow volume is assumed to be small compared to R,. The z- 
coordinate is normal to both s and n and has a direction following the right-hand 
rule. 

The local, instantaneous, velocity vector can be decomposed into means, U,  V ,  W ,  
and fluctuations, u, v, w, parallel, respectively, to the s, n, z directions. I n  flows with 
uniform mean shear in the n-direction alone, the mean velocity vector can be 
represented as 

(U, V ,  W )  = ( E )  U,+-n,O,O , (1) 

where U, is the centreline velocity, also assumed constant. 
Non-dimensionalizing the coordinates and the turbulent quantities by using an 

appropriate lengthscale, 1, an appropriate velocity scale, u ,  and the resulting 
timescale, 9- = l /u ,  and with the additional assumptions of homogeneity of the 
turbulence, uniformity of the scales 1, u and F,  two-dimensionality of the mean field 
and negligibility of the scale of turbulent motions compared to  the radius of 
curvature ( 1  < R,), one may simplify (Holloway 1989) the equations describing the 
temporal evolution of the turbulent kinetic energy per unit mass and the non- 
vanishing Reynolds stresses into the following dimensionless forms 

a -  - dU 
a7 dn 

~ ~ 1 ) * 2 + - ~ * ~  = 4~*v*S-9++~~-22~~, , ,  (4) 
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In the above equations, overbars denote ensemble averages and asterisks denote 
dimensionless quantities. The coefficient K~ is defined as 

1 d(u2) 
u2 dr 

K =-- (7) 

and 7 represents dimensionless time. The symbol E* represents the dimensionless 
dissipation rate of the turbulent kinetic energy and E : ~  etc. its components 
corresponding to the different turbulent stresses. The symbols q5$, etc. represent the 
dimensionless pressurestrain rate covariances, defined, for example, as 

Finally, the parameter S is defined as 

Clearly, S represents a relative measure of the curvature magnitude with respect to 
the mean shear. In an unsheared curved flow, S+.+ 00 ; in a non-curved shear flow, 
S = 0; in rigid body rotation, S = 1 ; and in irrotational flow, S = - 1. 

The above equations show that the curvature appears explicitly in ‘production ’ 
terms in the equations for the streamwise and transverse components of kinetic 
energy and for the shear stress. In contrast, in a rectilinear shear flow, direct energy 
production appears only in the equations for the streamwise component of the 
turbulent kinetic energy and for the shear stress (Champagne et al. 1970). 

Note that, if the scales u and F are chosen such that the parameters K~ and 
IdU/dnl Y are constant, then the dimensionless statistics, namely the solutions of 
(2)-(6) ,  would become functions of 7 and S only. Equation (7) shows that constancy 
of K~ implies an exponential variation of v (note that constancy of u would be 
regarded as a degenerate exponential change). 

2.3. Scales for the evolution of turbulence 
In a rectilinear homogeneous shear flow, if one chooses the characteristic timescale, 
F, to be equal to the inverse mean shear, IdU/dnl-’, the dimensionless time, 7, 
becomes equal to the total mean strain of a fluid element and, hence, proportional to 
the energy transferred from the mean flow to the turbulence (Harris, Graham & 
Corrsin 1977). In a curved homogeneous shear flow the mean strain rate is 
$(I-S)dU/dn and the total mean strain during the time t is t(1-S)dU/dn. 
Therefore, it seems logical to maintain 1dUldnl-l as the characteristic time in curved 
flows, at  least those with IS1 << 1.  It could also be pointed out that, in the limiting case 
when S = 1 (rigid body rotation), there is no mean straining of the fluid; however, 
1dUldnJ-l would also be a characteristic time, being proportional to the period of flow 
turning. With this choice of timescale, (2)-(6)  can be further simplified, by 
subs ti t u  ting 

where sgnS = 1 ,  if S > 0, and -1, if S < 0. 
In an unbounded, rectilinear, homogeneous shear flow there is no lengthscale 

associated with the mean field. Furthermore, because a coordinate transformation to 
a frame convected with the mean speed should be Galilean (Harris et al. 1977), the 
mean velocity cannot be used as a velocity scale. Therefore, a velocity scale (or 

(dU/dn) F = sgnS, (10) 

19.2 
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lengthscale) must be defined from consideration of the turbulence field. A convenient 
choice for the velocity scale, u,  would be the r.m.s. speed of the turbulent 
fluctuations, q’. When combined with the timescale, this yields the lengthscale 

1 = q’/ldU/dnl. (11) 
In  a curved homogeneous shear flow the radius of curvature of the mean flow, R,, 

represents an apparent external lengthscale. Furthermore, unlike in the straight flow 
case, a frame fixed with the curved mean flow is not inertial and the mean convection 
speed, U,, cannot be excluded as a velocity scale. I n  the present type of flow, R, is 
very large in comparison with the scales of the turbulence and i t  is unlikely that 
turbulent motions would scale with it. Besides, il perfectly homogeneous flow should 
be independent of any external lengthscale. The dependence of flow structure upon 
U, and R, can, however, be accommodated, if one notices that the ratio R J U ,  
provides another timescale for the flow, in addition to (dU/dnl-’. The equations for 
the Reynolds stresses lend some support to this hypothesis, because, in the limit of 
l /R, +- 0, all isolated appearances of Re vanish, while the appearance of the ratio 
RJU, persists. This ratio represents a period of turning of the flow, as can be seen 
by analogy to the case of rigid body rotation, where R J U ,  is precisely the period of 
rotation and r is equal to the angle of rotation. In view of this discussion, S can be 
interpreted as the ratio of timescales characteristic of mean shear and rotation 
effects. When S is small, shear effects should dominate, as they are imposed at  a 
faster pace on the turbulence structure. When S is large, turbulence production 
should be dominated by curvature effects and the appropriate timescale should be 
RJU,. At intermediate values of S,  turbulence production is substantially affected 
by both shear and curvature and the timescale characterizing the turbulence 
structure would likely be one intermediate between 1dUldnl-l and R,/U,; the 
average of these two scales is clearly an inappropriate choice because it leads to 
incorrect limits as S + 0 or f co ; the harmonic average overcomes this problem and 
would, perhaps, be more appropriate, although one should anticipate that coupling 
of the two production mechanisms would make a simple relationship between 
timescales unlikely. In  any case, Re and U, should not be used as independent length 
and velocity scales associated with the mean flow and such scales must be defined 
from the turbulence field. As in the straight shear flow, one may choose q’ and 1 
(equation (11)) as the most appropriate scales. 

Based on the above discussion, it seems plausible that all dimensionless turbulence 
statistics in a curved homogeneous shear flow would depend only on the dimensionless 
time, r ,  and the ratio, S, of the timescales of the mean field. Further relaxation of 
dependence on r would be equivalent to  a hypothesis of self-preservation of the 
turbulence structure, a possibility discussed in the next section. 

2.4. Consequences of self-preservation 
Tavoularis (1985) has introduced the hypothesis that rectilinear, uniformly sheared, 
transversely homogeneous turbulence would evolve asymptotically to a self- 
preserving state for which the dimensionless statistics would be independent of 7 and 
where the velocity and length scales would grow or decay exponentially. These 
arguments can easily be extended to homogeneous, curved shear flow. - -  Substituting 
u = q‘ in (2) and defining the dimensionless shear stress as K,,  = m/q2 ( =  u*v*), one 
gets 
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where the dimensionless ‘production ’, P*, and ‘dissipation ’, e*, are, respectively, 
defined as 

(13) P* = -K,,(l -S) sgnS 

and 

As in the rectilinear shear flow case, if K,,, S and E* are assumed to be independent 

(15) !? -qoe* 1 

where 2 is the value of? a t  a reference time r0. Similarly, if one further assumes that 
all dimensionless Reynolds stresses, K,,, K,,, K,, and K,,, have constant asymptotic 
values, then it follows that all Reynolds stresses would change exponentially, at the 
same rate as the kinetic energy. 

2 5.  The pressure-strain rate covariance tensor 

The pressure-strain rate covariances, which appear in the Reynolds stress equations, 
are believed to play an important role in the redistribution of turbulent kinetic 
energy into its three components and in the development of the shear stress. 
Pressure-strain rate covariances are too difficult to measure accurately, but, as 
demonstrated by Champagne et al. (1970), Harris et al. (1977) and Tavoularis & 
Karnik (1989, hereinafter referred to as TK), they can be estimated from the 
Reynolds stress equations as the balance of the other terms. We shall attempt to 
extend TK’s simplified estimates of these quantities to self-preserving, curved, 
uniformly sheared flows. 

The total dissipation rate, E * ,  can be estimated as the balance of the other, 
measurable terms in ( 1 2 ) .  For estimating the partition of the dissipation rate into its 
components, it seems worth exploring two plausible hypotheses, namely that (a) the 
dissipation is isotropic, and (b )  the dissipation is anisotropic but its anisotropy is 
equal to the anisotropy of the Reynolds stresses. The first hypothesis was used, 
among others, by Champagne et al. (1970) and is based on the assumption that 
dissipation depends primarily on motions corresponding to high wavenumbers, 
which would become isotropic at large Reynolds numbers (for a thorough discussion 
see Hinze 1975). The second hypothesis was introduced by TK and assumes that the 
anisotropy, imposed by the mean strain and most noticeable at  the low wavenumbers, 
persists even at  the higher wavenumbers, which are responsible for the dissipation. 
The actual anisotropy of the dissipation tensor could be bounded by the two cases 
presented above ; for this reason we shall pursue the implications of both hypotheses. 

of 7, then must be an exponential function of 7, namely, 
_ _  

2 - 2 K ( T - T ~ )  

For an isotropic dissipation, (3)-(6) lead to the expressions 

$2, = (K,, - f) K* + a&,,( 1 + 2 s )  sgn S, 
#$, = (K,, - f) - z&,,( 1 + 55) sgn S, 

#Z, = (&Llw - 5) Kq --2&,,( 1 - S )  sgn 8, 

(16) 
(17)  
(18) 

#:, = K , , K ~ + [ K , , ( ~  +S)-2KU,S]sgnS. (19) 
For a dissipation having the same anisotropy as the Reynolds stresses, (3)-(6) lead 
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One may note that (20)-(23) are independent of K ~ .  It is also interesting to note 
that, when the dimensionless pressure-strain rate covariances are normalized by the 
dimensionless ‘production ’ of turbulent kinetic energy, (20)-(22) take the following, 
simpler forms : 

s * 
?!E = 2KvU+4- 
P* 1-S’ 

3. Qualitative predictions of curvature effects 
At this point, it seems useful to attempt to generatc some insight into the 

mechanisms by which curvature affects turbulence by pursuing some elementary 
physical and analytical considerations. 

Momentum conservation dictates that turning of the mean flow along a curved 
streamline must be accompanied by a transverse mean pressure gradient, which is 
proportional to the mean centripetal acceleration. In a turbulent flow, a particle with 
velocity higher than the mean (u > 0) and, thus, with higher inertia, would tend to  
resist this turning more than the average, with the result that i t  would tend to 
develop a motion away from the centre of curvature and, therefore, a positive 
transverse velocity fluctuation ( v  > 0). Similarly, a particle with u < 0 would tend to 
develop v < 0. In conclusion, curvature would tend to create a positive correlation 
uv. When S c 0, curvature would enhance the production of shear stress by the mean 
shear, while when S > 0, curvature would oppose this production. 

The same conclusion, concerning production of shear stress, can be reached 
by observation of the production terms in ( 6 ) ,  rewritten in dimensional rather 
than - dimensionless form. I n  a rectilinear flow, the production term would be 
-v2(dU/dn)F, which has the same sign as m and would tend to increase the 
magnitude of m, _ _  independently of its sign. In a curved flow, the additional 
‘produetion ’, (2u2 -v2)  S(dU/dn) 9, would generally be positive and would tend to 
produce a positive shear stress. As a result, curvature would enhance mean shear 
production when S < 0, and oppose it when S > 0. 

The effects of curvature on the production of turbulent stresses are expressed in 
two ways: explicitly, through the appearance of terms proportional to S,  and 
implicitly, through the resulting changes of the turbulence structure (e.g. the value 
of u*v*),  which, in turn, enhance or suppress production by the mean shear. Focusing 
on the explicit production terms in (2) - (5) ,  rewritten in dimensional form, i t  is easy 
to see that curvature tends to produce additional 3 and Q“ when S < 0, and to 
suppress the production of these quantities when S > 0. It is curious to note that 
curvature tends to have the opposite effect on the explicit ‘production’ term for 2, 
namely it enhances production when S > 0, and suppresses it when S < 0. Because, 
however, the explicit production of v” by curvature is twice as large as the 
corresponding, opposite production of z, the net production of 2 agrees in sense 
with that of 2. There is no explicit production of 2 by either the mean shear or the 
curvature. 

- 
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In view of the above discussion, exposing the diverse, explicit effects of curvature 
upon the production of turbulent stresses, and the expectation (supported by 
measurements) that the dimensionless stresses would approach constant values, one 
must conclude that the pressure-strain rate correlation terms must play a very 
active role in the energy redistribution in curved shear flows. The strong coupling of 
pressure and velocity fluctuations could be related to the coupling of the mean 
velocity and pressure fields, due to streamline curvature. 

The above discussion also leads to a classification of curved shear flows, depending 
upon whether curvature tends to enhance or oppose the production of turbulent 
shear stress and kinetic energy by the mean shear. In flows with S < 0, curvature 
effects would, generally, be ‘destabilizing’, i.e. tending to enhance the growth of 
turbulent activity, while, in flow with S > 0, curvature effects would be ‘stabilizing ’, 
i.e. tending to suppress the growth of turbulent activity. In the latter case, whether 
turbulence grows or diminishes would depend on the relative magnitudes of shear 
and curvature. One may anticipate that for small, positive S turbulence might 
continue to grow but at a reduced rate compared to that in a corresponding 
rectilinear flow, whereas for large, positive S the turbulence might decay. Because 
curvature tends to produce positive shear stress, the possibility also arises that, for 
sufficiently large, positive S ,  uv might attain the same sign as the mean shear, 
contrary to the gradient transport concept. 

The previous discussion applies to flows with significant shearing rates (e.g. 
IS1 c 1) .  It would also be of interest to consider the limiting case of very weak shear 
(S+fco). Here, the direction of shear and, therefore, the sign of S, should be 
inconsequential because turbulence production should be dominated by curvature 
effects. The forms of (2) and (6) in this limiting case confirm this expectation and they 
also point to an anisotropic asymptotic turbulence structure with a positive shear 
stress. 

4. Stationary, transversely homogeneous, uniformly sheared, curved flow 
Homogeneous turbulence is difficult to generate and maintain experimentally. 

Laboratory approximations to homogeneous flow are usually stationary in the 
laboratory frame but inhomogeneous in the streamwise direction. A laboratory flow 
of this type studied in the convected frame may have a close relation to a 
homogeneous flow, provided that the streamwise inhomogeneity is small (Corrsin 
1963). Examples include grid-generated turbulence as an approximation to isotropic 
turbulence and uniformly sheared turbulence as an approximation to homogeneous 
shear flow. 

As an approximation to the homogeneous curved shear flow, presented in section 2, 
we will extend the study of rectilinear, uniformly sheared turbulence by including 
curvature effects. Detailed derivations and forms of the governing equations have 
been reported by Holloway (1989). We shall assume that the flow is stationary, two- 
dimensional on the mean and that the mean streamlines are concentric circular arcs, 
as shown in figure 1. Continuity of the mean flow requires that, if V = W = 0, then 
U cannot be a function of s. Conservation of energy also requires that, if the kinetic 
energy of turbulence changes downstream, it must be balanced by an opposite 
change of the mean static pressure. An alternative possibility (Hinze 1975) is that the 
static pressure could be independent of s, while the change of turbulence kinetic 
energy would be balanced by a streamwise change of the mean kinetic energy; in 
such a case, continuity requires that V 9 0. Any combination of these two 
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mechanisms is also possible but, if the change of the kinetic energy of the turbulence 
is relatively small, then any change in pressure or U may be neglected. Finally, 
conservation of transverse mean momentum, combined with transverse hom- 
ogeneity, requires that  a transverse gradient of mean pressure be created as a result 
of streamline curvature. 

The equations describing the balance of the Reynolds stresses and the turbulent 
kinetic energy can be simplified into forms which resemble but are distinct from 
(2)-(6): as an example, we present the turbulent kinetic energy equation, which 
becomes 

where 

+viscous terms, (27) 

As in the case of rectilinear shear flows, exact transverse homogeneity of the 
turbulence would be incompatible with a variation of U in the n-direction, because 
terms corresponding to convection of a property by the mean flow would vary 
transversely. The equations would become self-consistent only if the turbulence were 
streamwise homogeneous and the curvature effects were negligible, but this would 
also require that the production and dissipation of the turbulence would exactly 
balance, which is a singular condition that is not generally met. This problem has 
already been identified for rectilinear, uniformly sheared flow by Champagne et al. 
(1970), who concluded that, if the flow were inhomogeneous in the streamwise 
direction, then it would also have to be transversely inhomogeneous. 

A uniformly sheared, developing, laboratory flow would be rendered equivalent to 
a non-stationary homogeneous, curved shear flow by the transformation 

i.e. by describing the flow structure in a frame convected with the mean speed. If one 
further assumes small inhomogeneity and large radius of curvature, compared to  the 
transverse flow extent, the equations describing Reynolds stress development 
become identical in the two cases. 

5. Experimental apparatus and measuring procedures 

The wind tunnel at the University of Ottawa (figure 2) has been described in detail 
by Karnik & Tavoularis (1987, hereinafter referred to as KT). Following a 16 : 1 
contraction, the flow passed through the shear generator comprising 12 separate 
parallel channels each with a height M = 25.4 mm, the flow separator which tended 
to make the larger scales of the flow uniform, and a straight rectangular section a t  
height h, = 305 mm, width 457 mm and length 3193 mm, before entering the curved 
section. 

The straight section was equipped with four frames, permitting the insertion of 

5.1. The wind tunnel and the curved sections 
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FIGURE 2. Sketch of the wind tunnel, showing the 16: 1 contraction ( i ) ,  the shear generator (2), the 
flow separator, (3), the four slots for the insertion of grids and screens (4), the straight test section 
(5) and a curved test section (6); all dimensions are in m. 

grids and screens across the flow. As KT have shown, uniform obstructions reduce 
the magnitude of shear, while preserving the linearity of the mean velocity. For the 
present experiments, the downstream half of the straight test section that was used 
by KT and TK was removed and replaced by either of two interchangeable curved 
sections. The curved sections were designed to introduce two distinct degrees of 
curvature : a mild curvature, which would, presumably, introduce a small 
perturbation to the straight shear flow structure; and a strong curvature, which 
would create more pronounced effects. 

Boundary layers are considered to have mild curvature when 6/R < 0.01, where 6 
is the thickness of the wall layer within which the mean velocity is less than 99 YO of 
the free-stream velocity, U,, and R is the radius of curvature at the wall (Bradshaw 
1973). In a homogeneous shear flow there is no counterpart to the boundary-layer 
thickness. As mentioned earlier, however, a representative measure of curvature is 
the parameter S. This parameter would, generally, vary across a boundary layer but, 
if one were to make the crude assumption dU/dn - O(U,/6) ,  then 6/R - O(S). The 
maximum shear that can be generated by the existing facility corresponds to a flow- 
generator constant k, = ( l/Uc) (dU/dn) = 6.5 m-l (TK). As mild curvature for this 
flow, a curved section with a centreline radius R, = 5 m was chosen, which, in the 
unobstructed shear flow and depending upon the orientation of the shear generator, 
resulted in the values S x f0.03. Following the procedure introduced by KT, flows 
with smaller values of k, and, hence, larger magnitudes of S could be created by 
placing uniform obstructions in the flow. The second curved section had a smaller 
centreline radius, R, = 2 m, giving S x k0.08 in the unobstructed flow. Higher 
values of S in this section were also obtained by decreasing k, using flow obstructions. 
The use of two different curved sections permitted the generation of flows with a wide 
range of S values and the study of flow structure dependence upon the magnitudes 
of k, and R, separately. Flows generated in the two curved sections had overlapping 
ranges of S. 

The length of the curved sections was chosen with the objective of allowing 
adequate development of the turbulence, at least for the high-shear cases. In  the 
high-shear, straight flow, the turbulence became self-preserving within 2 m of the 
flow separator for the centreline speeds of interest here. By analogy, the lengths of the 
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Gridlscreen M, d 
symbol Type U (mm) (mm) 

G parallel grid 0.38 25.4 9.75 
s1 woven screen 0.26 12.7 1.76 
52 woven screen 0.29 3.2 0.70 
s 3  woven screen 0.29 3.2 0.70 

TABLE 1 .  Specifications for the grid and screens used in the present study (d is the gridlscreen 
element diameter) 

Case xg = 0 m xg = 0.32 m xg = 0.76 m xg = 1.37 m Xg1 (m) 
- - 0 

0 
- - A 

B s2  
- - 0.32 C s1 52 

D G s1 s 2  - 0.76 
E G s1 s 2  53 1.37 

TABLE 2. Positions of various grids and screens used to produce the shear flows 

- - - 

curved sections were chosen to be about 2 m. It may be noted that this is a rather 
conservative estimate, because the flow disturbance introduced by the change from 
a straight section to a curved one should be much weaker than that due to flow 
passage through the shear generator. The height, h,, of the curved sections was 
65 mm smaller than the height of the upstream straight section. Similarly, there was 
a 47 mm width reduction from the straight to the curved sections. The objective of 
these reductions was to remove the boundary layers at  the entrance of the curved 
sections, in order to reduce wall effects in the core region of the curved flows. 

5.2. Generation of shear 
The objective of the design of the apparatus used was to generate curved shear flows 
with different values of the parameter S. Note first that a measurable change in S 
would not be produced by changing the tunnel speed, U,, because that would result 
in flows with essentially the same values of k, (KT, TK). Flows with lower values of 
k, could, however, be produced by inserting a number of screens and/or grids normal 
to the flow downstream of the shear generator (KT). In order to facilitate 
comparisons of the results, the combinations of inserted screens and/or grids were 
selected such that, at the entrance to the curved section, all flows would have 
comparable values of the turbulent intensities and lengthscales. While the solidity, 
u, of these obstructions determines k,, the intensity and lengthscales of the 
turbulence are also influenced by the spacing or mesh size, Mg, and the positioning, xg 
of the obstructions. Three woven screens and one grid of parallel rods were combined 
to produce five sets of flow conditions (tables 1 and 2) with 0.53 < k, < 6.25. These 
flows will be referred to as cases A-E. Flows with roughly the same magnitudes but 
opposite directions of shear were achieved by inverting the shear generator. 
Therefore, a total of ten flow conditions could be generated ; these will be referred to 
as NA-NE and PA-PE respectively (N stands for ‘negative’ and P for ‘positive’ 
shear). In the straight tunnel the orientation of the shear is unimportant and any 
difference in the measured development of the turbulence between, for example, 
cases NA and PA can be attributed mainly to asymmetries of the shear generator and 
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screens, misalignment of the wind tunnel components and measurement errors. In 
the curved flow, however, the orientation of shear with respect to the curvature is an 
important factor that  influences the development of turbulence. 

5.3. Instrumentation and measuring procedures 

All measurements in the present study were performed with hot-wire anemometers, 
using a custom-made, cross-wire array (TSI 1248BJTl5). The sensing elements were 
made of tungsten and had a diameter of 5 pm and a length of 1.2 mm. They were 
separated by 0.5 mm and had nominal inclinations of k45' with respect to the axis 
of the probe body. The wires were powered by constant-temperature bridges (TSI 
1050A) and operated a t  an overheat ratio of about 1.5. 

The hot wires were calibrated in the wind tunnel, with all flow obstructions 
removed to  provide a low-turbulence airstream (u'/U x 0.005). The bridge voltage 
for each wire was related to the instantaneous velocity using a modified form of 
King's law, with coefficients adjusted by least-squares fitting to  the calibration data. 
To condition the hot-wire signals for digitization, an analog electronic circuit was 
used to offset, amplify (gain of 20) and low-pass filter (cutoff frequency of 10 kHz) the 
input signals. All signals were digitized using a 12-bit analog to digital converter 
(Data Translation DT 282S), connected to  a micro-computer. The analog to digital 
converter had a f 10 V range, giving a nominal resolution of 5 mV. 

The sidewalls of the curved sections were engraved with a polar coordinate system 
and the probe tip was positioned by aligning it with the corresponding lines on the 
two tunnel walls. The maximum error in the streamwise positioning of the probe was 
about 2 mm. The axis of the probe body was positioned by eye, tangentially to  both 
the centreplane of the tunnel and the engraved, circular coordinate at each 
streamwise location. The maximum error of this positioning was about 1' in the 
(s, n)-plane and about 3' in the (s, 2)-plane. Because the turbulent fields in the present 
flows were nearly homogeneous but strongly anisotropic, the measurements would be 
relatively insensitive to errors in probe translation but very sensitive to pitching of 
the probe. An empirical study in which the probe was pitched in the (s,n)-plane, 
suggests that  a 1' error in alignment would lead to 1 % error in 3, a 2% error in v" 
and a 5% error in m. The accuracy in the measurement of U would not be 
significantly affected by slight misalignment but the error in I' could exceed 100 %. 

The streamwise integral lengthscales, L,,, L,, and L,,, of the streamwise, 
transverse and spanwise velocity fluctuations were measured by integrating the 
corresponding autocorrelation coefficients to their first zeros and using Taylor's 
'frozen flow' approximation. The streamwise Taylor microscales, A,, A, and A,, were 

where the streamwise derivatives were estimated from the corresponding temporal 
derivatives using Taylor frozen flow approximation. 

6. Measurements in the straight section 
The characteristics of the straight flows, measured with a curved section in place, 

are summarized in tables 3, 4 and 5. The values of certain parameters were slightly 
different from those reported by TK, presumably owing to minor adjustments of the 
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PiA 
PiB 
NC 
KD 
NE 

P A  
PB 
PC 
PD 
P E  

10.3 
9.8 

10.0 
9.9 
9.4 

9.7 
9.6 
9.8 
9.7 
9.4 

- 64 
- 50 
- 30 
-15 
-5 

65 
53 
29 
13 
5 

6.3 
5.1 
3.0 
1.5 
0.6 

6.7 
5.5 
3.0 
1.3 
0.5 

TABLE 3. The mean flow conditions a t  the end of the straight section 

NA 
NB 
NC 
PU'D 
PU'E 

PA 
PB 
PC 
PD 
PE 

20.0 1.31 0.083 46 
16.0 0.60 0.073 32 
8.6 0.17 0.11 26 
3.7 0.57 0.069 100 

82 1.0 0.10 - 

21.4 1.70 0.098 46 
17.8 0.66 0.072 32 
8.6 0.18 0.14 26 
3.2 0.48 0.083 103 

78 1.0 0.11 - 

0.015 
0.0096 
0.0046 
0.012 
0.015 

0.015 
0.0086 
0.0046 
0.021 
0.013 

0.093 
0.074 
0.061 
0.30 
1.8 

0.089 
0.061 
0.059 
0.63 
1 .o 

0.076 
0.081 
0.071 
0.085 
0.63 

0.070 
0.065 
0.068 
0.18 
0.38 

5.4 0.73 0.83 
5.6 0.73 0.83 
7.0 0.79 0.86 
9.9 0.71 0.79 

10.3 0.91 1.00 

5.4 0.73 0.81 
5.3 0.75 0.85 
6.7 0.81 0.85 
9.4 0.75 0.85 
9.9 0.99 1.05 

TABLE 4. Reference values of turbulent parameters at  the end of the straight section 

NA 
NB 
KC 
ND 
NE 

P A  
PB 
PC 
PD 
PD 

TABLE 5. 

2080 2.2 280 0.143 0.29 0.84 0.7 1 
1030 2.1 190 0.150 0.24 0.93 0.76 
450 1.9 130 0.147 0.38 0.95 0.62 

3140 2.0 340 0.156 0.22 0.96 0.78 
1040 1.4 140 0.168 

2430 2.3 310 0.135 0.36 0.89 0.64 
1080 2.1 190 0.133 0.27 1.05 0.73 
470 1.8 130 0.133 0.51 1.20 0.49 

3150 1.9 300 0.140 0.30 1.29 0.70 
1010 1.2 130 0.134 - - 

Estimated values of dimensionless parameters at  the end of the straight section 

- 1 .o - 

- 
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shear generator, the aging of the system and differences in the measuring techniques. 
The dimensionless time (total strain) in the straight section is defmed as 

where xgl is the position of the farthest downstream obstruction used for the 
generation of a particular flow. The symbol ro denotes the value of 7 at the exit of 
- the straight section, just before the entrance to the curved section and the symbol 
q: represents the value of turbulent kinetic energy obtained by exponential 
extrapolation of the measurements to the end of the straight section. Plots of various 
flow properties in the straight section will be presented together with those in the 
curved sections. 

Previous investigators have proposed that, in rectilinear, uniformly sheared flow, 
the integral lengthscales would grow linearly or exponentially. We have considered 
both possibilities by least-squares fitting of appropriate functions to the measure- 
ments, as 

L U U  xs--so I Luuo , 
Jf - m s 7  M (34) 

(36) -- - eK,r,(7-70) 

Luuo 

where Luuo represent values extrapolated from the measurements to the end of the 
straight tunnel (differences between linear and exponential extrapolations can be 
neglected in the present context), corresponding to a downstream position xs0 and a 
dimensionless time r0. Best fits of the three coefficients m,, m7 and K~ are given in 
table 4. Although most data appear to be best described by the exponential law, 
variations in the values of the three coefficients for different flows indicate that, 
unlike grid turbulence, uniformly sheared flows may not obey a universal law for 
scale evolution. 

The five straight shear flows used here (flows with positive and negative shear are 
considered identical in this context) could perhaps be divided into what has 
previously been referred to as high-shear or low-shear flows (Harris et al. 1977). Cases 
A, B and C would be considered as high-shear flows, as they result in growing stresses 
and integral scales. Cases D and E could be considered as low-shear flows, having 
constant or decaying stresses and growing integral scales ; they are comparable to the 
experiments of Champagne et al. (1970) and cases 0 and P of TK. Careful 
examination of the development of K,,, Kvv, K,, and K,, with 7 has revealed that 
only cases A, B and C could confidently be considered as having achieved, before the 
end of the straight section, near constancy of these dimensionless stresses. For these 
cases, the dimensional stresses appeared to grow exponentially. For cases D and E, 
the dimensionless stresses were still changing at the end of the straight section, while 
the dimensional ones had not started to grow. 

Tests of self-preservation, based on the constancy of non-dimensionalized integral 
lengthscales, have been presented by Harris et al. (1977) and by TK, who found that 
the 'turbulence Reynolds number : ', R, = (dU/dn)* LEu/Ku, ?, evaluated for all 
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published data grew slightly with 7 .  The present measurements show that, in all 
cases, the lengthscale ratio LuJ1 (and, consequently, RT) changed relatively little 
compared to the change of either or Luu. The fact that this ratio maintained a 
value of order one in all cases is consistent with thc expectation that turbulence 
production was dominated by shearing effects. 

Estimates of the dimensionless kinetic energy dissipation rate, E:,  can be based on 
the balance of the production and convection terms in (12). Such estimates have been 
presented for a variety of uniformly sheared flows by TK, using the notation T,/T,. 

Alternatively, the development of E* could also be estimated from the isotropic 
relation 

Both estimates are presented in table 5 ,  which shows the systematic relation 
e: < er. The values of eT seemed to achieve approximate constancy near the end of the 
straight section, in cases A, B, C and D, while they showed a persisting change in 
case E. 

As table 5 shows, for those flows which demonstrated a self-preserving character, 
dimensionless statistics spanned relatively narrow ranges of values, although shear 
rates differed substantially. Nevertheless, considering that all these flows were 
generated by similar means, i t  is not possible to conclude with certainty whether 
these dimensionless statistics approached values which were independent of the flow 
facility and, thus, inherent to uniformly sheared turbulence. 

The straight shear flows A, B and C had length and velocity scales with comparable 
magnitudes and rates of growth ; the somewhat higher kinetic energy growth rate in 
case C could, perhaps, be accommodated by considering that, in this case, the last 
obstruction was a fine mesh screen and not a larger mesh grid or flow separator as 
in the other cases. The structures of these flows were effectively identical, as 
indicated by the comparable asymptotic values of the dimensionless turbulent 
stresses and lengthscales. In  any case, the differences in growth rates and in 
structural parameters among cases A, B and C in the straight section are sufficiently 
small to  permit an evaluation of the effects of curvature by a direct comparison of 
their developments in the curved sections. 

The low-shear flows, D and E, were subject to relatively small values of total strain 
in the straight section and, as a result, their structure did not appear to have reached 
its asymptotic state. Furthermore, the small value of shear introduced a higher 
uncertainty in the determination of the total strain and the evolution rates. On the 
other hand, cases D and E exhibited the highest values of S, and, therefore, were 
affected by curvature much more than the high-shear cases. For these reasons, 
results from cases D and E will be used for a qualitative assessment of strong 
curvature effects but not in the quantitative analysis of the results. 

7. Measurements in the curved sections 
7.1.  Mean velocity 

Tables 6 and 7 present measurements of shear rates and centreline velocities for the 
different flows a t  two locations, one near the entrance to  each curved section and one 
near its exit. In  general, the former values were rcpresentative of conditions in the 
major part of the test section and will thus be used in the following. In any case, it 
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Case 

NA 
NB 
NC 
ND 
NE 

PA 
PB 
PC 
PD 
PE 

s/h,  = 0.417 slh,  = 5.42 

U, dU/dn k, U, dU/dn k, 
(m/s) (8-l) (m-l) S (m/s) (8-l) (m-l) S 

10.2 -61 6.0 -0.033 10.6 -51 4.8 -0.042 
9.8 - 50 5.1 -0.039 9.8 - 46 4.7 -0.043 
9.9 - 30 3.0 -0.066 10.0 - 26 2.6 -0.077 
9.8 - 16 1.6 -0.12 9.7 -11 1.1 -0.17 
9.5 -6 0.6 -0.3 9.5 -6 0.7 -0.3 

10.1 64 6.3 0.032 10.1 61 6.0 0.033 
10.3 52 5.0 0.040 10.3 50 4.9 0.041 
10.3 27 2.6 0.076 10.3 26 2.5 0.079 
10.4 11 1.1 0.19 10.5 9.5 0.9 0.22 
9.6 3 0.3 0.6 9.9 2 0.2 1 

TABLE 6. The mean flow conditions in the mildly curved section (R, = 5 m) 

alh, = 0.417 slh, = 4.74 

U, dU/dn k, U, dU/dn k, 
Case (m/s) (8-l) (m-l) S (m/s) (8-l) b - l )  S 

NA 10.1 - 64 6.3 -0.079 11.4 - 60 5.3 -0.095 
NB 9.7 - 52 5.4 -0.093 10.0 - 54 5.4 -0.093 
NC 9.6 -31 3.2 -0.15 10.3 -31 3.0 -0.17 
ND 9.6 - 19 2.0 -0.25 10.4 - 17 1.6 -0.31 
NE 9.1 -9 0.9 -0.5 9.7 -9 0.9 -0.5 

P A  10.1 65 6.4 0.078 10.5 64 6.1 0.082 
PB 10.6 53 5.0 0.10 10.8 52 4.8 0.10 
PC 11.0 30 2.7 0.18 11.0 30 2.7 0.18 
PD 10.2 8 0.8 0.64 11.2 9 0.8 0.62 
PE 9.6 < 1  c o . 1  > 5  10.4 < 1  <0.1 > 5  

TABLE 7. The mean flow conditions in the strongly curved section (R, = 2 m) 

can be seen that the variation of the mean velocity along the centreline of the curved 
sections was less than 3 YO and that the mean shear was effectively constant, with the 
possible exception of the near-exit region of the tunnel, particularly in some 
negatively sheared cases. The transverse and spanwise mean velocity components 
were generally found to be smaller than 1 YO of U,. In most cases the mean shear had 
spanwise variations that were comparable to those in previous experiments in 
rectilinear shear flows. In some cases with a negative shear, however, the spanwise 
uniformity of the shear deteriorated near the end of the section, although in a 
manner which did not appear to be related to the boundary-layer growth. 

Upon entering the curved section, the mean shear magnitude appeared to decrease 
somewhat when S > 0, and to increase when S < 0. This observation is compatible 
with the concept of conservation of vorticity in inviscid flow and the fact that, 
although in the straight section the vorticity happens to be equal to the mean shear, 
in the curved section it is equal to the sum dU/dn+ U / R .  
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7 . 2 .  Presentation of turbulence measurements 

To assist future work, we wish to present as many direct measurements of primary 
turbulent quantities as possible, and in view of the large volume of measurements 
obtained, we summarize here the approach followed in the presentation of these 
results. First, because it was found that the degree of transverse inhomogeneity of 
the Reynolds stresses in the curved sections was generally comparable to that in 
straight shear flows (TK ; although somewhat more pronounced in the S < 0 cases), 
only measurements along the tunnel centreline will be presented. In anticipation of 
exponential evolution of the turbulent stresses and lengthscales, these quantities will 
be plotted 0s. the dimensionless evolution time (total strain) in semi-logarithmic 
coordinates. All measurements of a certain quantity corresponding to flows with 
roughly the same mean shear will be presented in the same plot. These include two 
flows in the straight section and a pair of flows in each of the curved sections. 
Therefore, each turbulent parameter will be presented in a set of five plots, each 
containing six sets of measurements. It is noted that, in the straight section, r will 
be defined according to (33), whereas, in the curved sections, it will be defined as 

To avoid confusion among different cases, the measurements will be plotted vs. r -ro,  
with the understanding that negative values of this parameter correspond to the 
straight section, while positive ones correspond to a curved section. 

For economy of presentation, the downstream evolution of turbulent activity will 
be represented by plots of the kinetic energy, ?, the streamwise integral lengthscale, 
L,,, and the streamwise Taylor microscale, A, (all normalized by the corresponding 
values at the entrance to  the curved section), while the evolution of the turbulence 
structure will be represented by plots of the anisotropy of the dimensionless 
Reynolds stress, defined as 

m u u = K  -1 m = K  vv -1 3’ m ww =Kww-k muv =Kuv, uu 39 vv 

and the anistropy of the integral lengthscale ratios, 2Lvv/Luu - 1 and 2Lw,/L,, - 1. 
The curved shear flows can be separated into two distinct classes, the destabilized 

ones, i.e. those with S < 0, and the stabilized ones, i.e. those with S > 0. There is also 
a distinction between the high-shear (cases A, B and C) and the low-shear (cases D 
and E) flows. Presentation of the measurements will be made following this 
classification. Note that, when comparing the evolution rates between flows with 
different shear, one must consider the differences in the ranges of the horizontal axes. 

7.3 .  Turbulent kinetic energy and its partition 

Measurements of the turbulent kinetic energy along the centreline of the wind 
tunnel, comprising the straight section and either of the two curved sections, are 
plotted against the (offset) dimensionless time, r - T ~ ,  in figure 3, while the measured 
anisotropies of the Reynolds stress tensor are plotted vs. r -ro in figure 4. The kinetic 
energy measurements were fitted with an exponential function and the evolution 
coefficients, K ~ ,  evaluated for each flow using linear regression on the semi- 
logarithmic axes, are presented in table 8. 

Inspection of figure 3 reveals that, universally and unmistakeably, curvature 
enhanced the evolution rate of turbulent kinetic energy when S < 0 and it suppressed 
it when S > 0. For the same entrance conditions, this enhancement or supression was 
always stronger in the strongly curved section than in the mildly curved section. 
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FIGURE 3. Evolution of the turbulent kinetic energy along the wind tunnel centreline for flow types 
A (a),  B (b) ,  C (c), D ( d )  and E (e); triangles signify results in the straight section, circles in the 
mildly curved section and boxes in the strongly curved section ; open symbols indicate positive S 
and closed symbols negative 8. 

In all destabilized (8 < 0) flows, the turbulent kinetic energy grew nearly 
exponentially in the curved sections, even in case NE, for which exponential growth 
had not been established at the end of the straight section. The enhancement for a 
given shear rate was always greater in the strongly curved section and the coefficient 
K* appeared to increase monotonically with increasingly negative S. As indicated by 
the near constancy of the Reynolds stress anisotropies away from the two ends of the 
curved sections, in the high-shear cases, NA, NB and NC, the turbulence structure 
appeared to reach self-preserving states that were practically independent of 7.  In 
the low-shear cases, ND and NE, however, some anisotropies were monotonically 
developing downstream, indicating that self-preservation of the turbulence structure 
had not yet been attained at the last measuring station. Of course, these observations 
are consistent with the fact that high-shear flows were more 'mature' than the low- 
shear ones, the former having been subjected to much larger total strains than the 
latter ; similar observations were made for these flows in the straight section. Among 
the low-shear cases, ND was the closest to full develapment when it entered the 
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FIQURE 4(a-d). For caption see facing page. 
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O; 

-0.1 

-0.1 L 4 

Case 

NA 
N B  
NC 
ND 
ND 

PA 
PB 
PC 
PD 
PE 

R , = 5 m  

KO m, mr KL 

0.132 0.025 0.17 0.073 
0.136 0.022 0.17 0.100 
0.191 0.0086 0.11 0.095 
0.145 0.028 0.68 0.148 
0.270 0.013 0.87 0.193 

0.015 0 0 0 
0.004 0 0 0 

-0.020 0 0 0 
-0.268 -0.007 -0.24 -0.076 
-0.791 - - - 

R , = 2 m  

KO 

0.204 
0.256 
0.342 
0.327 
0.590 

-0.053 
-0.076 
-0.126 
-0.379 
- 

ms 112, 

0.048 0.29 
0.043 0.32 
0.019 0.23 
0.048 0.95 
0.025 1.1 

-0.016 -0.097 
-0.007 -0.052 
-0.006 -0.093 
-0.036 -1.76 

TABLE 8. Turbulence evolution coefficients in the curved sections 

KL 

0.104 
0.148 
0.166 
0.196 
0.318 

-0.065 
-0.049 
-0.105 
-0.59 

curved section and reached the largest total strain within it. Even so, case ND in the 
mildly curved section had a substantially lower exponent of growth of 2 than case 
NB had in the strongly curved section, although the two flows had comparable 
values of S. 

Among the stabilized (S > 0) flows, case PA in the mildly curved section exhibited 
a weak growth of kinetic energy, and case PB, also in the mildly curved section, 
maintained a nearly constant level of?, while, in all other cases, the kinetic energy 



590 A .  G .  L .  Holloway and S .  Tavoularis 

-0.10 0.50 -0.141 -0.063 -0.100 -0.051 -0.061 0.016 0.001 ~ - 
0.10 -0.30 -0.051 0.053 -0.003 0.037 -0.037 0.002 -0.021 - - 
Gaussian - 0 0 0 0 0 0 0 - - 

-0.10 0.50 2.94 3.14 3.13 1.42 1.49 1.44 -0.168 1.03 -0.176 
Gaussian - 3 3 3 1.5 1.5 1.5 0 1.0 0 
0.10 -0.30 2.99 3.28 3.17 -0.911 1.22 -0.945 -0.128 0.999 -0.128 
Gaussian - 3 3 3 -0.9 1.18 -0.9 0 1.0 0 

TABLE 9. Typical values of higher-order moments in a curved shear flow (case B, s /h ,  = 3.0, 
R , = 2 m )  

decayed downstream. Although exponential evolution of cannot be established 
with certainty, because of its small change in the curved sections, exponential curves 
were also fitted to these measurements, in order to permit a direct comparison of all 
cases. The resulting values of K* were, respectively, positive (in the mildly curved 
PA), near zero (in the mildly curved PB) and negative (in all other cases) and 
generally decreased with increasing S. As in the destabilized cases, the downstream 
development of the Reynolds stress anisotropy reveals an attainment of self- 
preserving structures for the high-shear cases, PA, PB and PC, but not for the low- 
shear cases, PD and PE. 

The anisotropies of the normal stresses were subject to  some scatter, part of which 
may be because the spanwise stress was measured separately from the other two. 
Although every effort was made to align locally the hot-wire probe body with the 
tunnel centreline, the sensitivity of these stresses to probe orientation may have also 
introduced some uncertainty. In any case, the high-shear results cannot reveal any 
systematic effect of curvature upon the anisotropies of the normal stresses. On the 
other hand, the low-shear results show a tendency of negative curvature (S < 0) to 
reduce the streamwise dimensionless stress, K,, , and to increase the transverse 
dimensionless stress, K,,, while positive curvature (S  > 0) had the opposite effects. 
The spanwise dimensionless stress, K,,, appeared to be unaffected by curvature and 
maintained the nearly isotropic value that it developed in the straight section. 
Therefore, one may conclude that its eff'ects upon the normal stress anisotropies may 
be neglected in cases of weak curvature. 

Higher-order moments of the three components of velocity in the curved shear 
flow had nearly Gaussian values with deviations that were, generally, compatible 
with the level of inhomogeneity. Typical values are shown in table 9. 

7.4. Turbulent sheav stress 
Among all measured dimensionless quantities (see table lo), it  was the dimensionless 
shear stress, K,,  (which is equal to its anisotropy, mu,), that appeared to be most 
sensitive to  curvature. All measurements of this parameter illustrated very 
consistently that, while mean shear tended to produce a shear stress opposite to its 
direction, curvature tended to  produce a shear stress directed away from the centre 
of curvature. When the directions of the two production mechanisms coincided (i.e. 
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€: Eb+ - -  - K u u  L,, A, - iKKP 
p* p* p* p* Case S K , ,  K,,  K , , ,  x sgnS - - 

1 A U O  

-0.033 
-0.039 
-0.066 
-0.079 
-0.093 
-0.15 

0.032 
0.040 
0.076 
0.078 
0.10 
0.18 

0.51 0.20 
0.51 0.20 
0.46 0.22 
0.50 0.23 
0.48 0.23 
0.42 0.25 
0.48 0.20 
0.50 0.19 
0.47 0.21 
0.46 0.20 
0.47 0.19 
0.45 0.21 

0.29 
0.29 
0.32 
0.27 
0.29 
0.33 
0.32 
0.31 
0.32 
0.34 
0.34 
0.34 

0.150 
0.155 
0.164 
0.167 
0.165 
0.192 
0.117 
0.112 
0.102 
0.104 
0.096 
0.061 

2.3 1.09 
2.4 1.09 
1.8 0.95 
2.5 1.14 
2.5 1.15 
1.9 0.99 
2.1 1.01 
2.0 1.00 
1.6 0.90 
1.9 0.98 
1.8 0.97 
1.4 0.86 

0.155 
0.161 
0.175 
0.180 
0.180 
0.221 
0.113 
0.108 
0.094 
0.096 
0.086 
0.050 

0.43 0.70 
0.42 0.77 
0.55 0.89 
0.57 0.52 
0.71 0.56 
0.77 0.57 
0.066 1.0 
0.019 1.4 

-0.11 2.3 
-0.28 1.2 
-0.44 1.8 
-1.3 4.1 

TABLE 10. Some dimensionless parameters for curved, high-shear flows (M indicates 
mildly curved and S strongly curved) 

0.67 
0.58 
0.45 
0.43 
0.29 
0.23 
0.93 
0.98 
1 .1  
1.3 
1.4 
2.3 

whcn S < 0 ) ,  the quantity muv sgn S tended to  decrease from its negative value in the 
straight section, and, when these directions opposed each other (i.e. when S > 0) ,  
that  quantity increased. The changes in shear stress anisotropy were consistently 
larger in the strongly curved section than in the mildly curved one. 

In  the high-shear flows, thc dimensionless shear strcss quickly reached nearly 
constant asymptotes, whose values decreased systematically with increasing S. I n  
the low-shear flows, however, the same quantity maintained a monotonic variation 
throughout the curved sections, in which, as mentioned earlier, only modest or small 
(especially in the PE cases) total strains were achieved. Comparing the four low-shear 
cases separately, one may conclude that the XI) and NE cases were closer to  an 
asymptotic structure a t  the exit of the curved section than cases PD and PE were. 
The strongly curved PD and PE cases, in particular, show spectacular increases of 
m,,sgnS from its initial negative levels, across zero, to positive values, with all 
indications pointing to  even larger positive asymptotic levels, if one presumes that 
self-preserving states were to be attained given additional tunnel length ; of course, 
growth of this quantity cannot persist indefinitely, as it is statistically bounded by 
an upper bound that is less than unity. A reversal in direction of shear stress, such 
as to achieve the same sign as the mean shear has previously been observed only in 
strongly inhomogeneous flows. This phenomenon appeared for values of S that were 
of order unity, in which case curvature effects are expected to dominate over those 
of shear. Nevertheless, because shear and curvature effects are inherently coupled 
through the governing equations, it is not clear whether initially sheared flow 
subjected to curvature would attain the same asymptotic structure as initially 
unsheared curved flow would. 

’ 

7 .5 .  Integral lengthscales 
The streamwise evolution of the streamwise integral lengthscale, Luu, in both the 
straight and the curved sections, are plotted in semi-logarithmic coordinates us. 7 -70 

in figure 5.  In  a fashion similar to  that of the turbulent kinetic energy evolution, the 
growth of this scale in the straight section was enhanced by negative curvature 
(S  < 0) and suppressed by positive curvature (8 > 0). This effect was manifested in a 
stronger way in the strongly curved section than in the mildly curved one. Most 
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FIGURE 5. Evolution of the streamwise integral lengthscale along the wind tunnel centreline. 
Cases and symbols as in figure 3. 

lengthscale measurements (excluding data near the two ends of the curved sections 
and flows with 'immature ' structures) were compatible with fitted exponential 
curves, in which the evolution coefficient, K~ could be positive, near zero or negative. 
These coefficients, as well as optimum coefficients, m, and mT, for linear fits according 
to (34)-(36), are presented in table 8. Note the contrast between the present cases 
with very weak turbulence production (large positive S), in which both the turbulent 
kinetic energy and the lengthscales decrease downstream, and grid turbulence, in 
which the turbulent kinetic energy decays but the lengthscales grow downstream. 

The effect of curvature on the relative evolution of velocity and lengthscales is 
presented in figure 6, in the form of plots of the ratio LJl  us. T - T ~ ,  where 1 is defined 
by (1  1).  This ratio is proportional to the ratio of the mean shear timescale, (dU/dn)-', 
and the turbulent 'eddy turnover ' time, Luu/u', used by TK. In the mature flows in 
the straight section, the ratio L J l  varied only slightly from a value around 2.0, in 
conformity with the measurements presented by TK. The effect of curvature was to 
increase this ratio when S < 0 and to decrease it when S > 0, the more so, the larger 
the magnitude of S. This is particularly obvious in the PD and PE cases, especially 
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FIGURE 6. Evolution of the dimensionless turbulence scale, Lu,,/l. Symbols as in figure 3. 

in the strongly curved section. Based on these observations, one may conclude that, 
although in rectilinear shear flows the mean shear imposes its own timescale on the 
turbulence structure, in curved shear flows the temporal evolution of this structure 
is influenced by both the shearing and the curvature timescales. Unfortunately, a 
quantitative description of this phenomenon is not possible, because the flows that 
exhibited the strongest curvature effects did not reach an asymptotic structure in the 
present facility. 

As additional indicators of the effects of curvature upon the anisotropy of the 
turbulence structure, the quantities 2L,,/L,, - 1 and 2Lww/L,, - 1 are plotted us. 
7-7,, in figure 7 ;  both quantities vanish in isotropic turbulence. In  the straight 
section, these anisotropies generally took values in the range between -0.3 and 
-0.4. In the high-shear flows, curvature generally tended to increase the ratio 
L,,/L,, in cases with negative S and to decrease it in cases with positive S. It had 
the opposite effect on the ratio L,,/L,,, although less pronounced. In the low-shear 
flows, the same trends were observed for L,,/L,,, but Lw,/L,, seemed to be 
insensitive to curvature. In  any case, remember that Eulerian integral lengthscales, 
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FIUURE 7. Evolution of the anisotropy of integral lengthscales along the wind tunnel 
centreline. Cases and symbols as in figure 3. 
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FIGURE 8. Evolution of the streamwise Taylor microscale along the wind tunnel centreline. 
Cases and symbols as in figure 3. 

computed by integrating the corresponding autocorrelation functions to their first 
zeros, are only crude indicators of the size of turbulent eddies, and that flows with 
comparable values of such scales could have vastly different structures. 

7.6. Taylor microscales 
In general, in both the straight and the curved sections, the Taylor microscales 
exhibited streamwise, spanwise and transverse variations that were small compared 
to the streamwise variations of the kinetic energy and the integral lengthscales. The 
anisotropies of the Taylor microscales were also relatively small, as evidenced by 
table 4, showing the ratios A,/& and A J A ,  in the straight section. Figure 8 shows 
that curvature had an effect of slightly increasing Au when negative and slightly 
decreasing it when positive. Curiously, curvature effects on A, were more visible in 
the high-shear than in the low-shear flows. 
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8. Analysis of the results and discussion 
8.1. On the stability of curved shear flow 

The present experiments include cases for which the energy of turbulence grew and 
decayed roughly exponentially. Stability analyses of curved shear flows, such as a 
circular Couette flow, have also predicted exponential growth or decay of the energy 
of introduced disturbances. 

The simplest and most easily applied criterion for instability of curved shear flow 
is that of Rayleigh (1916), which gives the necessary and sufficient condition for the 
instability of an arbitrary disturbance of the base motion in inviscid flow as 

a 
-[U(n+R,)]2 < 0. 
an 

Equation (40) implies that, if the square of the angular momentum of the base 
motion decreases outward from the centre of curvature, the flow would be unstable; 
otherwise the flow would be unconditionally stable. 

One might explore the possible application of this criterion to a turbulent flow by 
considering the mean velocity as the base motion and the velocity fluctuation as a 
disturbance. Obviously, this analogy is seriously limited by the differences between 
an inviscid flow and a (highly dissipative) turbulent flow. Nevertheless, one may 
evaluate the implications of (40) for the present flow, which has a linear mean 
velocity. I n  this case, the necessary and sufficient condition for instability on the 
wind tunnel centreline (n = 0) is S < - 1, with the limiting case corresponding to  
irrotational motion (a potential vortex). The present experiments suggest that flows 
for which S < 0.05 show growing stresses. Therefore, i t  appears that  Rayleigh’s 
criterion cannot provide, even approximately, the threshold value of S that separates 
flows with growing turbulent stresses from those with decaying ones. 

8.2. Towards a quantitative description of weak curvature eSfeects 
It has so far been clearly demonstrated that the turbulence structure in the curved 
sections has a systematic dependence upon the curvature and that the values of 
dimensionless flow parameters depend monotonically upon the value of S. Among 
the cases studied, there is a good degree of confidence in the results obtained in the 
twelve high-shear cases A, B and C. Therefore, it seems worth consolidating these 
results into a set of semi-empirical, analytical expressions, which could be useful for 
comparisons with the results of theories and models. The results in the low-shear 
cases D and E were, generally, consistent with the trends observed in the high-shear 
cases. Nevertheless, because of the relative immaturity of these flows and the 
reduced confidence in the accuracy of measurements of S ,  T etc., the low-shear results 
will not be used in the present, quantitative description. 

Among the independently measured parameters, the one that appears to be both 
very sensitive to curvature and measurable with good accuracy is the dimensionless 
shear stress, K,,. For the high-shear flows at least, K,, had a sign opposite to the sign 
of S and a magnitude that decreased with increasing S. The high-shear results, 
collected in figure 9, can be reasonably well represented by the linear, least-squares 
fit 

Then, the ‘production’ of turbulent kinetic energy can be represented as 

K,, = -0.14(1-3.08) sgnS. (41) 

P* = 0.14(1-3.0S) (1-8). (42) 
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FIGURE 9. The dependence of K,, on S in the high-shear flows. The solid line represents a least- 
squares fit to the data (equation (41)). 
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S 

F~GURE 10. The dependence of K, on S in the high-shear flows. The solid line represents a least- 
squares fit to the data (equation (43)). 

As mentioned earlier, it seems likely that K,, would reach constant, asymptotic 
values for very large positive or negative values of S. With this in mind, one can view 
the linear expression (41) as the tangent, at S = 0, of a more complicated function of 
S (e.g. one that has an error-function-type shape). 

A second, independent, empirical relationship between a turbulent parameter and 
S is further required. The dimensionless ‘convection’ of kinetic energy, i ~ ~ ,  was 
readily measurable, although subject to errors larger than those pertaining to the 
measurement of P*. Measurements of the ratio i~J(1-s) in the high-shear flows, 
shown in figure 10, appear to be compatible with the linear relationship 

(43) 
‘K 

= 0.039(1- 18.5S), 
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S 

FIQURE 11. Dependence of the production, P*, convection, K ~ ,  and dissipation, E * ,  of the 
turbulent kinetic energy upon the parameter S in high-shear flows. 

which leads to the following expression for the dimensionless ‘dissipation : 

C* = O.lO(lf3.28) (1-8).  (44) 

The inferred dependences of the dimensionless production, convection and 
dissipation upon S are illustrated in figure 11.  P* decreased monotonically with 
increasing S,  pointing to a possible sign reversal a t  sufficiently large, positive S ,  
although this would be outside the range of the present approximation. The ratio 
s*/P* was about 0.7 a t  S = 0 and increased monotonically with increasing S, while 
the ratio iK,JP* showed the reverse trend. 

The above expressions should describe the measurements fairly well in the range 
-0.15 < S < 0.15 and, with some reservations, possibly in the extended range 
-0.25 < S < 0.25. One must refrain, however, from further extrapolating these 
expressions, as this could lead to inaccuracies and to  possible physical absurdities, 
such as E* < 0. 

8.3. Estimates of the pressure-strain rate covariances 

Using the previously derived empirical expressions for K,, and K* and the average 
values K,,  w 0.48, K,, w 0.21 and K,, z 0.31, it is possible t o  compute the small-8 
dependence of the pressurestrain rate covariances, based on the equations presented 
in $2.5. These are 

$:u = -0.175(1 +0.20S-7.6S2), (45) 

#:, = 0.084(1+4.55- 18.8S2), (46) 
$:, = 0.091( 1 - 3.7S+ 2.7S2), (47) 

#:, = 0.199(1-2.5s-4.2S2+3.0S2) sgnS (48) 
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S S 
FIGURE 12. Variation of the pressure-strain rate covariances, calculated from the balance of the 
Reynolds stress equations and based on (a) the isotropic and ( b )  an anisotropic model of the 
dissipation. 

for an isotropic dissipation, and 

$:, = -0.146(1-0.15S--8.5S2), (49) 

(50) 

(51) 

(52) 

$:v = 0.059( 1 + 5.58- 25.657, 

$zw = 0.087( 1 - 4.05 + 3.0S2), 

$:v = 0.17 1 (1  - 2.85 - 3.4S2 + 2. 1S3) sgn S 

for a dissipation tensor with the same anisotropy as the Reynolds stress tensor. Both 
sets of expressions are plotted us. S in figure 12. This figure shows that, in general, 
$:u < 0 and $Ew > 0 in the present range, while $& is slightly negative for large, 
negative S and positive otherwise. 

It is generally accepted that, in rectilinear shear flows, the pressure-strain rate 
covariances provide coupling among the Reynolds stress equations and redistribute 
the energy from the streamwise energy component to the transverse and spanwise 
components. A pressure-strain covariance also contributes to the production of shear 
stress. In addition to these observations, which also apply to curved flows, one may 
also note the following effects. 

When S > 0, the correlation between pressure and strain rate fluctuations appeared 
to diminish and, therefore, to play a less significant role in the kinetic energy 
partition. In this case, the transverse component received more energy from the 
streamwise component than the spanwise component did. However, when S < 0, the 
energy transferred from the streamwise component to the spanwise component 
exceeded that transferred to the transverse component. For the more extreme cases 
of negative S, all the energy transfer from the streamwise component went to the 
spanwise component, which also received energy from the transverse component. 

For both the isotropic and anisotropic models of dissipation rate, and presumably 
for any conditions which lie between these extremes, the pressure-strain rate 
covariances were strong functions of S and played an important role in the 
determination of the Reynolds stress. 
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8 .4 .  Comparison to curved boundary layers 

Rectilinear, uniformly sheared flows are known to have properties comparable to  
those in the outer regions of two-dimensional, turbulent boundary layers (Tavoularis 
& Corrsin 1981). It seems worth examining the extent by which curved homogeneous 
shear flows would be similar to curved inhomogeneous flows, particularly curved 
boundary layers. Because the curvature parameter, S, varies strongly across a 
boundary layer, such comparisons can only be qualitative. 

The strength of the curvature in boundary layers can be characterized by the ratio 
6/R, where 6 is the boundary-layer thickness and R is the radius of curvature of the 
surface. I n  the present context, 6/R= O(S), if one makes the crude estimate 
A = O(U,/6). As an example, the mildly curved boundary layers studied by 
Ramaprian & Shivaprasad (19786) had 6/R x 0.013. The same authors have 
reported that, across most of the boundary layer near a concave wall (S < O ) ,  
K,, M 0.2 ,  while, near a convex wall (S > 0 ) ,  K,, z 0.11. These values are 
significantly different from the value K,, z 0.16 measured in a plane boundary layer 
and compatible with the results obtained in the approximately homogeneous flows. 

Curvature effects on lengthscales in homogeneous and boundary-layer flows were 
also found to be similar. For example, in comparison to the integral lengthscales in 
a plane boundary layer, the integral lengthscales in a comparable concave boundary 
layer were found to be larger, while those in a convex boundary layer were found to 
be smaller. Furthermore, the Taylor microscales in boundary layers were almost 
unaffected by curvature. Similar observations have been madc in the present flows. 

8.5. On the reversal of the shear stress in stabilized flows 
It was noted earlier that, for low-shear flows in the strongly curved section (cases PD 
and PE), the turbulent shear stress attained the same sign as the mean shear, in 
sharp contrast with the gradient transport concept as well as with all other 
observations in nearly homogeneous shear flows with a lower magnitude of S .  Rather 
than being anomalous, these cases further establish the monotonic trend observed in 
all stabilized flows, namely that curvature tends to  produce positive shear stress. The 
continuing increase of the coefficient K,, in the low-shear PD and PE cases prevents 
us from establishing a relationship between this coefficient and S, in the large-$ 
range. Since K,,  is bounded, such a relationship can be foreseen to  approach 
asymptotically constant values for both very large positive and very large negative 
S .  In  these ranges, of course, the effects of mean shear are likely to be small compared 
to curvature effects, and, therefore, the dimensionless time 7 would be irrelevant as 
an independent variable for the evolution of turbulence structure, because its 
definition is based on the timescale of the mean shear, (dU/dn)-l. An alternative 
dimensionless time, connected with the timescale of the flow curvature, RJU,, would 
be the turning angle, 8, defined as 

To exploit this possibility, the low-shear measurements ofK,, sgn S have been plotted 
us. 6 in figure 13. All results essentially collapsed on two monotonic clusters, one 
decreasing (S < 0 )  and one increasing (S > 0 ) .  The decreasing cluster appeared to be 
closer to its asymptote, which was near -0 .25 ,  while the increasing cluster 
demonstrated an essentially linear increase that persisted beyond its last value of 
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FIGURE 13. Evolution of the dimensionless turbulent shear stress aa a function of the turning 
angle. 

about 0.07. If one further speculates that, in the limit of vanishing shear, K,, would 
become independent of both the magnitude and the sign of S, then one may 
extrapolate the results in figure 13 to obtain 

K,,+0.25 as S+fco, (54) 

with the plausible explanation that the negative-S cases approached this asymptote 
faster (in terms of turning angle) than the positive-S cases did, because their starting 
values at  the end of the straight section were closer to it .  

Although sign reversal of shear stress has been observed in strongly inhomo- 
geneous, asymmetric flows (Eskinazi & Erian 1969) and strongly stabilized 
buoyant flows (Komori et al. 1983), this appears to be the first time that this 
phenomenon has been documented for homogeneous curved shear flows. 

9. Conclusions 
The present experiments have demonstrated that approximately homogeneous, 

curved, shear flows can be generated in the laboratory. These flows have displayed 
two distinct patterns of turbulence development : flows with S > 0.05 had decreasing 
Reynolds stresses and integral lengthscales, while flows with S < 0.05 had increasing 
Reynolds stresses and integral lengthscales. The effect of curvature on the turbulence 
structure was most clearly displayed by the dimensionless shear stress, K,,, which 
acquired asymptotically constant values when sufficient development time was 
available in the facility. These asymptotic values were monotonically decreasing 
with increasing S.  In a qualitative sense, the effects of curvature on nearly 
homogeneous shear stress were found to be similar to those observed in curved 
boundary layers. 

Financial support for this research was provided by the Natural Sciences and 
Engineering Research Council of Canada. 
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